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ABSTRACT

We report on the cause of the 1997 May 12 type II bursts observed by ground based and space-based
radio instruments. We estimate the fast mode speed in the corona as a function of heliocentric distance to
identify the regions where fast mode shocks can be driven by CMEs. We find that both the coronal and the
interplanetary type II bursts can be explained by shocks driven by the same CME at two different spatial
domains. The fast mode speed in the corona has a peak at a heliocentric distance of ~ 3 Rg which does
not allow the coronal shock wave to propagate beyond this distance. When the CME continues to travel
beyond the fast mode peak, another shock forms in the interplanetary medium where the fast mode speed
falls sufficiently. From the radio observations we can infer that the plane of the sky speed of the CME is
smaller than the space speed by at least a factor of 2, consistent with the location of the eruption at N21
WO08. The inferred CME speed is also consistent with previous deprojected speed estimates.

INTRODUCTION

Long wavelength radio bursts in the decameter-hectometric (DH) regime represent an effective diagnostic of
solar disturbances leaving the Sun. Radio type II bursts are produced by MHD fast mode shocks (Gopal-
swamy et al. 2000c) at the local plasma frequency and its harmonic in the corona and interplanetary (IP)
medium. By combining meterwave observations from the ground and DH observations from space, it is pos-
sible in principle to track some of these shocks through the entire Sun-Earth connected space. In practice,
however, the correspondence between meterwave and DH has been very complex and poorly understood
(Gopalswamy et al, 1998; Cliver et al., 1999; Reiner and Kaiser, 1999). While every DH type II burst is
associated with a CME (Gopalswamy et al. 2000b) as in the case of kilometric type IT bursts, many of them
are not associated with metric type IT bursts. Statistical studies have shown poor correlation between IP
shocks detected in situ and those inferred from metric type II bursts (Gopalswamy et al., 2000c), probably
due to the complex profile of the fast mode speed in the corona. Thus, a careful examination of the coronal
and IP type II bursts along with the associated coronal mass ejection (CME) is necessary to understand their
relationship. In this paper, we explore the relationship between coronal and DH type II bursts during the
1997 May 12 solar eruption, one of the first major events during the rising phase of cycle 23. Various aspects
of this event such as Ha flare (Jain et al., 1997), white light CME (Plunkett et al., 1998), EUV transient
(Thompson et al. 1998) and magnetic cloud at 1 AU (Webb et al., 2000) have already been reported.

OBSERVATIONS

The May 12, 1997 eruption involved both an active region (AR 8038, N21 WO08) and its associated filament
from the northwest quadrant of the Sun, resulting in a full-halo CME and an EUV transient observed by the
Solar and Heliospheric Observatory (SOHO). The eruption also resulted in radio bursts in the metric, DH



Table 1. Time-line of the 1997 May 12 Solar Eruptive Event

Time (UT) Activity

04:34 Loop Brightening following an Earlier Dimming

04:35 Projected onset time of EIT Wave

04:42 to 05:26 GOES C1.3 X-ray Flare from AR 8038, peak at 04:55 UT
04:50 Global Enhancement in EUV

04:54 to 05:03 Fundamental Metric type II burst

04:54 to 05:10 Harmonic Metric type II burst

04:57 to 05:18  Shock-associated type III bursts

05:06 to 05:15 DH type II (Fundamental)

05:10 - 06:04 Metric type IV burst

06:30 Leading edge of the LASCO CME at 3 R
12:00 on 05/14 Kilometric type II burst

01:00 on 05/15 Interplanetary shock detected by Wind
10:00 on 05/15 Magnetic Cloud detected by Wind

and kilometric domains. The DH and kilometric observations were made by the Wind/WAVES experiment
(Bougeret et al., 1995). Table 1 shows a timeline of the event, starting from ~ 04:34 UT on May 12, 1997.

Type II Bursts

The metric type IT burst had fundamental (F) and harmonic (H) components staring at 04:54 UT, roughly
about 10 min after the onset of the GOES X-ray flare. Radio spectra obtained by the Hiraiso Radio
Spectrograph (HiRAS) shows that the starting frequency of the F-component was ~ 60 MHz and continued
to frequencies below 25 MHz. The H-component started at ~ 120 MHz and ended at 30 MHz at 05:10
UT, within the observing frequency range of HiRAS (see Figure 1). The F-component continued into the
Wind/WAVES dynamic spectrum for a short while and ended at 05:15 UT at a frequency of 10 MHz (see
Figure 2). In three minutes, the F-component seems to have drifted from 25 MHz to 14 MHz. There were
intense type III bursts, starting at 04:57 UT and ending shortly after the end of the DH type II burst.
These type III bursts clearly start after the onset of the metric type IT burst suggesting that they are due
to shock-accelerated electrons. Taken together, the metric and DH dynamic spectra suggest that a type 11
shock existed between 60 and 10 MHz plasma levels.

After a long gap of more than a day, a kilometric type 1I burst started at 140 kHz. Since the eruptive
event was sufficiently well isolated, we are confident that the kilometric type IT burst was associated with
the May 12, 1997 eruption. Following the kilometric type II burst, an IP shock was detected at 01:00 UT
on May 15, 1997 by Wind’s in situ plasma and magnetic field instruments (see e.g., Webb et al., 2000). The
IP shock was clearly driven by an IP ejecta. From in situ measurements we found that the IP ejecta had
an average speed of ~ 450 km s~! and lasted for ~ 17 hr (Gopalswamy et al., 2000a).

White Light and EUV Observations

The earliest near-surface activity was an EUV loop brightening at ~ 04:34 UT (Gopalswamy and Thompson,
2000) in the active region. A wave transient was observed by SOHO’s Extreme-ultraviolet Imaging Telescope
(EIT), moving away from the eruption site with a speed of ~ 245 km s~! (Thompson et al., 1998). The
height-time plot of the EIT transient, when extrapolated to earlier times, coincided with the EIT loop
brightening. The white light CME first appeared above the LASCO/C2 occulting disk at 06:30 UT with a
sky-plane speed of ~ 275 km s~!, similar to the EIT transient speed. The white light speed of the CME
was obtained by tracking the fastest part of the halo CME. Others have reported slightly different speeds
for this event (Plunkett et al., 1998; Sheeley et al., 1999). The EUV transient and white light CME have
similar speeds in the sky plane and their onset clearly precedes the associated flare. A global enhancement
was observed in the EUV images at 04:50 UT, which was roughly symmetric around the region of eruption,
and had a diameter of ~ 10 arcmin. Global enhancement is a recently discovered phenomenon, which seems
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Figure 1: Dynamic spectrum obtained by the Hiraiso Radio Spectrograph (HiRAS) showing the fundamental
(F) and harmonic (H) components of the metric type II burst. Some sections of the burst were weak, so
we have drawn dashed lines through the components to guide the eye. The H-component ends within the
HiRAS spectral range. The F-component continues to frequencies below the low frequency end of HiRAS.
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Figure 2: Dynamic spectrum in the DH domain (1-14 MHz) obtained by the Wind/WAVES experiment
showing the continuation of the fundamental component of the metric type IT burst and a series of intense
type III bursts associated with the type II shock.



to be the earliest EUV signature of CMEs (Gopalswamy et al, 1999; 2000b). The most prominent and
long-lasting EUV feature associated with the CME is the twin-dimming located to the north and south of
the active region. Webb et al., (2000) interpreted that the feet of the CME flux rope are located in the EUV
dimming regions. From Figure 1 of Webb et al. (2000) we see that the global enhancement clearly precedes
the twin-dimming. We can reconcile the dimming and global enhancement as follows: If the flux rope is the
expanding coronal coronal cavity, then the global enhancement may be the frontal structure of the CME.

ANALYSIS

Assuming a hemispherical shape for the eruption, one can estimate the heliocentric distance of the CME
from the EUV global brightening as ~ 1.3 R at 04:50 UT. The metric type II burst starts a few minutes
later at 04:54 UT. We assume that the shock is formed at this time. If the CME is the shock driver, it
must have attained a speed greater than the local fast mode speed (Vy) at this time. Figure 3 shows a plot
of V; as a function of radial distance for the quiet corona assuming a 3 x Saito model (Saito et al., 1977).
Also plotted are the fundamental and harmonic frequencies (curves 1 and 2 in Figure 3) as a function of
radial distance. Sections of curves 1 and 2 are thickened to show the frequency range over which the type II
burst occurred in the metric and DH domains. For the density model used, the 60 MHz plasma level is at
a distance of 1.5 Rg. Assuming that the CME originated from close to surface at 04:34 UT, it must have
taken ~ 20 min to attain the fast mode speed. The type II burst ends at 05:15 UT when the CME must
have lost the shock because V; has increased considerably. Note that the type II burst ends at the 10 MHz
plasma level (in the Wind/WAVES domain), corresponding to the region of peak fast mode speed (Vimaz)-
Thus we infer that the shock was able to survive only for the duration of the type I burst in the metric and
DH domains.

Since there was an IP shock indicated by the kilometric type II burst and in situ observations, the CME
must have started driving another shock in the IP medium. When exactly the IP shock started depends on
the profiles of Vy and Vj,, (the solar wind speed) in the IP medium. In the presence of the solar wind flow,
the CME speed in excess of V,,, must exceed V; to drive a shock. The Thermal Noise Receiver (TNR) of
WAVES measured a plasma frequency of 45 kHz in the upstream of the shock as it arrived at Wind. For an
inverse-square density dependence, assuming harmonic plasma emission, we infer that the kilometric type
IT burst must have started at a heliocentric distance of ~ 140 R (0.65 AU).

The above analysis suggests that the CME speed has a lower limit, close to the local V; in the heliocentric
distance range 1.5 to 2.9 Rg. This limit is ~ 320 to 520 km s~! (see the profile of V; between the two
vertical lines in Figure 3). When the type II burst ended, the CME probably had a speed of ~ 520 km s~ .
The CME speed, however, had to be lower than V},,,, as there was no radio emission at frequencies below
10 MHz. The inferred CME speed at 2.9 Rg is thus almost twice as large as the plane of the sky speeds
measured in EUV and white light images and is consistent with the deprojected speed obtained by Plunkett
et al. (1998).

DISCUSSION AND CONCLUSIONS

A combined analysis of multiwavelength and multi-instrument data has helped us identify the shocks driving
the type II bursts. First of all, the type II radio burst in the metric and DH domains is the same event,
unlike in some cases where there is no obvious connection in the two domains. A similar event, a purely
CME-driven metric type II burst that continued into the DH domain was reported by Gopalswamy (2000).
Assuming that the shock was driven by the CME we found that the CME must have had a speed of at least
520 km s~ ! when it reached ~ 2.9 Ry. If this is true, then the low sky plane speed is due to projection
effects. The CME originated from close to the central meridian (N21 W08) and hence we expect significant
projection effects. The higher CME speed is also consistent with the in situ speed (~ 450 km s~!) which
clearly exceeded the solar wind speed (~ 320 km s~1).

An alternative interpretation for the type II shock would be a blast wave from the associated flare. The
blast wave is expected to be super-Alfvenic during 04:54 to 05:15 UT and die off near the peak of the fast
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Figure 3: Plots of fast mode speed (V; — dashed curve), solar wind speed (V;,, — dot-dashed curve), fun-
damental (curve 1) and harmonic (curve 2) plasma frequencies as function of heliocentric distance in solar
radii (Rg). The two vertical lines at 1.5 and 2.85 R, represent coronal layers where the the type II burst
started and ended while the two horizontal lines (60 MHz and 10 MHz) mark the corresponding plasma
levels. The plasma frequency curves bounded by the pairs of horizontal and vertical lines represent the
frequency domain of the fundamental and harmonic type II bursts as derived from the HiRAS dynamic
spectrum. Curves 1 and 2 are thickened by solid and dashed curves to indicate the radio burst. Note the

peak in V; around 3 R.



mode speed (see Figure 3). In this case, the DH type II burst also has to be due to the blast wave. In
this scenario, the CME would have slowly accelerated and become super-Alfvenic only in the IP medium
to produce the kilometric type II burst. While we cannot rule out the blast wave scenario, we prefer the
CME-driven scenario because of the relatively low starting frequency of the metric type II burst and its
continuation into the DH domain. This is also consistent with the profuse DH type III bursts when the
CME arrives at the plasma level corresponding to the DH domain.

In a related study, Mann et al. (1999) obtained a speed of 1029 km s~ ! for the coronal shock assuming
one-fold Newkirk model for the coronal density. This is much larger than all the mass motions observed
during this event. According to these authors, the EIT wave and the coronal shock are generated in the
same flare such that the EIT wave represents the pre-shock stage of the fast mode wave in the lower corona,
which eventually steepens to become the shock. This interpretation is similar to the blast wave scenario.
Mann et al. (1999) obtained an Alfven wave speed profile which peaks at ~ 800 km s~!. Since the inferred
speed of the coronal shock is 1029 km s~!, the coronal type II bursts should have continued for several solar
radii more, contrary to the observations. In conclusion, the coronal and interplanetary type II radio bursts
associated with the May 12 1997 CME can be interpreted as due to two shocks one near the Sun and the
other far into the IP medium due to a complex interrelationship of the CME speed, the fast mode speed
and the solar wind speed. The ambient conditions ahead of the CME were favorable for shock formation in
two stretches in the space between Sun and Earth.
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